Handout 23 November 11, 2013

Discussion Problems 6

Problem One: Designing Turing Machines

Draw the state transition diagram for a Turing machine whose language is $L = \{ w \in \Sigma^* \mid w \text{ is a palindrome } \}$ over the alphabet $\Sigma = \{ \mathbf{0}, \mathbf{1} \}$.

Problem Two: Nondeterministic Algorithms

A computable function is a function $f: \Sigma^* \to \Sigma^*$ with the following property – there is a TM M that, when given w on its input tape, always halts with f(w) on its tape.

Given any computable function f and language L, we define $f(L) = \{ w \in \Sigma^* \mid \exists x \in L . f(x) = w \}$. In other words, f(L) is the set of strings formed by applying f to each string in L.

Prove that if $L \in \mathbf{RE}$ and f is a computable function, then $f(L) \in \mathbf{RE}$. As the title of this problem suggests, you might want to build a nondeterministic Turing machine for f(L).

Problem Three: Unsolvable Problems

Consider the language $L = \{ \langle M, w, q \rangle \mid \text{TM } M \text{ does not enter state } q \text{ when run on string } w \}$. Prove that $L \notin \mathbf{RE}$ by showing if $L \in \mathbf{RE}$, then $L_D \in \mathbf{RE}$.